Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Wenguo Wang, Xiaofeng Zhang, Deguang Huang, Hongping Zhu, Changneng Chen and Qiutian Liu*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: lqt@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.008 \text{ Å}$ R factor = 0.045 wR factor = 0.147 Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Quinolinium trichloro(quinoline)zinc(II)

In the title compound, $(C_9H_8N)[ZnCl_3(C_9H_7N)]$, the Zn^{II} atom is coordinated by three chloride ions and one N atom of the quinoline ligand to form a distorted tetrahedral coordination geometry, with a Zn-N bond length of 2.090 (4) Å, Zn-Cl bond lengths ranging from 2.2319 (14) to 2.2707 (13) Å and zinc bond angles ranging from 102.89 (11) to 115.41 (11)°.

Received 22 October 2001 Accepted 31 October 2001 Online 10 November 2001

Comment

Since hindered nitrogen bases give a variety of structural types for metal complexes, a series of adducts of transition metal halides with monodentate nitrogen bases has been studied (Healy *et al.*, 1985; Savariault *et al.* 1988). We chose quinoline as the nitrogen base to react with Zn^{II} and Mn^{II} salts to obtain heterometallic Zn/Mn nitrogen base complexes; consequently the title Zn^{II} complex, (I), was isolated.

The crystal structure of (I) consists of a $[ZnCl_3(C_9H_7N)]^$ monoanion and a discrete quinolinium cation as shown in Fig. 1. Within the $[ZnCl_3(C_9H_7N)]^-$ anion, the Zn atom is coordinated by three chloride anions and one quinoline N atom in a distorted tetrahedral arrangement, the Zn-N bond length being 2.090 (4) Å and the Zn-Cl bond lengths 2.2319 (14), 2.2512 (15) and 2.2707 (13) Å. The bond angles around Zn range from 102.89 (11) to 115.41 (11)° for N-Zn-Cl angles and from 105.86 (6) to 114.49 (6)° for Cl-Zn-Cl angles. The Zn-N and Zn-Cl distances are in accord with the corresponding distances in the (Hcin)ZnCl₃ complex (cin is cinchonine; Hubel et al., 1999) and other Zn complexes reported in the literature (Cui et al., 1998; Lundberg, 1966; Bharadwaj et al., 1991; Laity & Taylor, 1995; Parvez & Rusiewicz, 1995). There are no unexpected geometrical features associated with the coordination structure of the zinc. However, the most notable difference between the structure of (I) and (Hcin)ZnCl₃ is the protonation position, which was found to occur at the tertiary N atom for the latter. In complex

Figure 1

Structure of (I) showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level. H atoms have been omitted for clarity.

(I), the shortest distance between the uncoordinated quinoline and the complex anion is $Cl_2 \cdot \cdot \cdot N2 = 3.303$ (5) Å, showing the existence of a $Cl \cdots H-N$ hydrogen bond, and indicating protonation occurring at the pyridine-N atom of the uncoordinated quinoline. It is obvious that quinoline plays a double role in the structure, *i.e.* coordinating to the metal atom as a Lewis donor and balancing the minus charge by protonation. Interestingly, all the quinoline rings in the structure are nearly parallel to each other, as shown in Fig. 2, with a dihedral angle of $176.7 (5)^{\circ}$. It is also noted that the existence of the Cl_{2} ···H-N hydrogen bond lengthens the Zn-Cl₂ bond to 2.2707 (13) Å, which is the longest of the three Zn-Cl bonds.

Experimental

A mixture of Zn(OAc)₂, MnCl₂·4H₂O, CH₃CH₂COOH and quinoline were dissolved in ethanol and refluxed for 12 h. The resulting solution was allowed to stand at room temperature and colorless crystals of (I) were obtained.

Crystal data

C_9H_8N [ZnCl ₃ (C ₉ H ₇ N)]	Z = 2
$M_r = 431.04$	$D_x = 1.618 \text{ Mg m}^{-3}$
Friclinic, $P\overline{1}$	Mo $K\alpha$ radiation
u = 8.2360 (7) Å	Cell parameters from 2580
p = 9.5392 (7) Å	reflections
c = 11.9512 (10) Å	$\theta = 1.7 - 25.0^{\circ}$
$\alpha = 98.499 \ (1)^{\circ}$	$\mu = 1.84 \text{ mm}^{-1}$
$\beta = 94.670 \ (1)^{\circ}$	T = 293 (2) K
$\nu = 106.104 \ (1)^{\circ}$	Prism, colorless
$V = 884.76 (12) \text{ Å}^3$	$0.32 \times 0.20 \times 0.18 \text{ mm}$
Data collection	
Siemens SMART CCD	3047 independent reflections
diffractometer	2232 reflections with $I > 2\sigma(I)$
v scans	$R_{\rm int} = 0.029$
Absorption correction: multiscan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 8$
$T_{\min} = 0.453, \ T_{\max} = 0.718$	$k = -11 \rightarrow 9$
503 measured reflections	$l = -14 \rightarrow 13$

Figure 2

A packing diagram of (I) viewed along the b axis.

Refinement

Refinement on F^2	H-atom parameters constrained		
$R[F^2 > 2\sigma(F^2)] = 0.045$	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$		
$wR(F^2) = 0.147$	where $P = (F_o^2 + 2F_c^2)/3$		
S = 0.91	$(\Delta/\sigma)_{\rm max} < 0.001$		
3047 reflections	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$		
217 parameters	$\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$		

Table 1

Selected geometric parameters (Å, °).

2.090 (4)	C1-N1	1.330 (6)
2.2319 (14)	C1-C2	1.398 (7)
2.2512 (15)	C9-N1	1.379 (5)
2.2707 (13)	C10-N2	1.322 (7)
106.18 (11)	Cl3-Zn-Cl2	111.92 (5)
102.89 (11)	Cl1-Zn-Cl2	105.86 (6)
114.49 (6)	C1-N1-C9	118.4 (4)
115.41 (11)	C10-N2-C18	123.9 (4)
	2.090 (4) 2.2319 (14) 2.2512 (15) 2.2707 (13) 106.18 (11) 102.89 (11) 114.49 (6) 115.41 (11)	$\begin{array}{cccc} 2.090 \ (4) & C1-N1 \\ 2.2319 \ (14) & C1-C2 \\ 2.2512 \ (15) & C9-N1 \\ 2.2707 \ (13) & C10-N2 \\ \end{array}$

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
N2-H2 B ···Cl2	0.86	2.75	3.303 (5)	124

H atoms were located from difference Fourier syntheses and were refined with a riding model.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SHELXTL XPREP (Siemens, 1994); program(s) used to solve structure: *SHELXTL*; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by The State Key Basic Research and Development Plan (No. G1998010100) and NNSFC (Nos. 29733090 and 29973047).

References

Bharadwaj, P. K., Schugar, H. J. & Potenza, J. A. (1991). Acta Cryst. C47, 754-757.

Cui, Y., Long, D., Chen, W. & Huang, J. (1998). Acta Cryst. C54, 1605–1607.
Healy, P. C., Pakawatchai, C. & White, A. H. (1985). Aust. J. Chem. 38, 669–675.

- Hubel, R., Polborn, K. & Beck, W. (1999). Eur. J. Inorg. Chem. pp. 471–482.
- Laity, H. L. & Taylor, M. R. (1995). Acta Cryst. C51, 1791-1793.
- Lundberg, B. K. S. (1966). Acta Cryst. 21, 901-909.
- Parvez, M. & Rusiewicz, M. (1995). Acta Cryst. C51, 2277-2279.
- Savariault, J., Galy, J., Gutierrez-Zorrilla, J. & Roman, P. (1988). J. Mol. Struct. **176**, 313–322.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Siemens (1994). *SHELXTL* (Version 5.0) and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.