Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wenguo Wang, Xiaofeng Zhang, Deguang Huang, Hongping Zhu, Changneng Chen and Qiutian Liu*

State Key Laboratory of Structural Chemistry, Fulian Institute of Research on the Structure of Matter, Fuzhou, FuJian 350002, People's Republic of China

Correspondence e-mail: Iqt@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.045$
$w R$ factor $=0.147$
Data-to-parameter ratio $=14.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Quinolinium trichloro(quinoline)zinc(II)

In the title compound, $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}\right)\left[\mathrm{ZnCl}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right]$, the $\mathrm{Zn}^{\text {II }}$ atom is coordinated by three chloride ions and one N atom of the quinoline ligand to form a distorted tetrahedral coordination geometry, with a $\mathrm{Zn}-\mathrm{N}$ bond length of 2.090 (4) $\AA, \mathrm{Zn}-$ Cl bond lengths ranging from 2.2319 (14) to 2.2707 (13) \AA and zinc bond angles ranging from 102.89 (11) to $115.41(11)^{\circ}$.

Comment

Since hindered nitrogen bases give a variety of structural types for metal complexes, a series of adducts of transition metal halides with monodentate nitrogen bases has been studied (Healy et al., 1985; Savariault et al. 1988). We chose quinoline as the nitrogen base to react with $\mathrm{Zn}^{\mathrm{II}}$ and $\mathrm{Mn}^{\text {II }}$ salts to obtain heterometallic $\mathrm{Zn} / \mathrm{Mn}$ nitrogen base complexes; consequently the title $\mathrm{Zn}^{\text {II }}$ complex, (I), was isolated.

(I)

The crystal structure of (I) consists of a $\left[\mathrm{ZnCl}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right]^{-}$ monoanion and a discrete quinolinium cation as shown in Fig. 1. Within the $\left[\mathrm{ZnCl}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right]^{-}$anion, the Zn atom is coordinated by three chloride anions and one quinoline N atom in a distorted tetrahedral arrangement, the $\mathrm{Zn}-\mathrm{N}$ bond length being 2.090 (4) \AA and the $\mathrm{Zn}-\mathrm{Cl}$ bond lengths 2.2319 (14), 2.2512 (15) and 2.2707 (13) \AA. The bond angles around Zn range from 102.89 (11) to 115.41 (11) ${ }^{\circ}$ for $\mathrm{N}-\mathrm{Zn}-$ Cl angles and from 105.86 (6) to 114.49 (6) ${ }^{\circ}$ for $\mathrm{Cl}-\mathrm{Zn}-\mathrm{Cl}$ angles. The $\mathrm{Zn}-\mathrm{N}$ and $\mathrm{Zn}-\mathrm{Cl}$ distances are in accord with the corresponding distances in the (Hcin) ZnCl_{3} complex (cin is cinchonine; Hubel et al., 1999) and other Zn complexes reported in the literature (Cui et al., 1998; Lundberg, 1966; Bharadwaj et al., 1991; Laity \& Taylor, 1995; Parvez \& Rusiewicz, 1995). There are no unexpected geometrical features associated with the coordination structure of the zinc. However, the most notable difference between the structure of (I) and (Hcin) ZnCl_{3} is the protonation position, which was found to occur at the tertiary N atom for the latter. In complex

Received 22 October 2001
Accepted 31 October 2001 Online 10 November 2001

Figure 1
Structure of (I) showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level. H atoms have been omitted for clarity.
(I), the shortest distance between the uncoordinated quinoline and the complex anion is $\mathrm{Cl} 2 \cdots \mathrm{~N} 2=3.303$ (5) \AA, showing the existence of a $\mathrm{Cl} \cdots \mathrm{H}-\mathrm{N}$ hydrogen bond, and indicating protonation occurring at the pyridine- N atom of the uncoordinated quinoline. It is obvious that quinoline plays a double role in the structure, i.e. coordinating to the metal atom as a Lewis donor and balancing the minus charge by protonation. Interestingly, all the quinoline rings in the structure are nearly parallel to each other, as shown in Fig. 2, with a dihedral angle of $176.7(5)^{\circ}$. It is also noted that the existence of the $\mathrm{Cl} 2 \cdots \mathrm{H}-\mathrm{N}$ hydrogen bond lengthens the $\mathrm{Zn}-\mathrm{Cl} 2$ bond to 2.2707 (13) \AA, which is the longest of the three $\mathrm{Zn}-\mathrm{Cl}$ bonds.

Experimental

A mixture of $\mathrm{Zn}(\mathrm{OAc})_{2}, \mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ and quinoline were dissolved in ethanol and refluxed for 12 h . The resulting solution was allowed to stand at room temperature and colorless crystals of (I) were obtained.

Crystal data

$\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}\right)\left[\mathrm{ZnCl}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right]$
$M_{r}=431.04$
Triclinic, $P \overline{1}$
$a=8.2360$ (7) \AA
$b=9.5392$ (7) \AA
$c=11.9512(10) \AA$
$\alpha=98.499$ (1) ${ }^{\circ}$
$\beta=94.670(1)^{\circ}$
$\gamma=106.104(1)^{\circ}$
$V=884.76(12) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.618 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2580 \\
& \quad \text { reflections } \\
& \theta=1.7-25.0^{\circ} \\
& \mu=1.84 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colorless } \\
& 0.32 \times 0.20 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens SMART CCD diffractometer
ω scans
Absorption correction: multiscan (SADABS; Sheldrick, 1996)
$T_{\min }=0.453, T_{\max }=0.718$
4503 measured reflections

Figure 2
A packing diagram of (I) viewed along the b axis.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.147$
$S=0.91$
3047 reflections
217 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.35 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.45 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$).

$\mathrm{Zn}-\mathrm{N} 1$	$2.090(4)$	$\mathrm{C} 1-\mathrm{N} 1$	$1.330(6)$
$\mathrm{Zn}-\mathrm{Cl} 3$	$2.2319(14)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.398(7)$
$\mathrm{Zn}-\mathrm{Cl} 1$	$2.2512(15)$	$\mathrm{C} 9-\mathrm{N} 1$	$1.379(5)$
$\mathrm{Zn}-\mathrm{Cl} 2$	$2.2707(13)$	$\mathrm{C} 10-\mathrm{N} 2$	$1.322(7)$
$\mathrm{N} 1-\mathrm{Zn}-\mathrm{Cl} 3$	$106.18(11)$	$\mathrm{Cl} 3-\mathrm{Zn}-\mathrm{Cl} 2$	$111.92(5)$
$\mathrm{N} 1-\mathrm{Zn}-\mathrm{Cl} 1$	$102.89(11)$	$\mathrm{Cl} 1-\mathrm{Zn}-\mathrm{Cl} 2$	$105.86(6)$
$\mathrm{Cl} 3-\mathrm{Zn}-\mathrm{Cl} 1$	$114.49(6)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9$	$118.4(4)$
$\mathrm{N} 1-\mathrm{Zn}-\mathrm{Cl} 2$	$115.41(11)$	$\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 18$	$123.9(4)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{Cl} 2$	0.86	2.75	$3.303(5)$	124

H atoms were located from difference Fourier syntheses and were refined with a riding model.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SHELXTL XPREP (Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: $S H E L X T L$; molecular graphics: $\operatorname{SHELXTL}$; software used to prepare material for publication: SHELXTL.

metal-organic papers

This work was supported by The State Key Basic Research and Development Plan (No. G1998010100) and NNSFC (Nos. 29733090 and 29973047).

References

Bharadwaj, P. K., Schugar, H. J. \& Potenza, J. A. (1991). Acta Cryst. C47, 754 757.

Cui, Y., Long, D., Chen, W. \& Huang, J. (1998). Acta Cryst. C54, 1605-1607. Healy, P. C., Pakawatchai, C. \& White, A. H. (1985). Aust. J. Chem. 38, 669675.

Hubel, R., Polborn, K. \& Beck, W. (1999). Eur. J. Inorg. Chem. pp. 471482
Laity, H. L. \& Taylor, M. R. (1995). Acta Cryst. C51, 1791-1793.
Lundberg, B. K. S. (1966). Acta Cryst. 21, 901-909.
Parvez, M. \& Rusiewicz, M. (1995). Acta Cryst. C51, 2277-2279.
Savariault, J., Galy, J., Gutierrez-Zorrilla, J. \& Roman, P. (1988). J. Mol. Struct. 176, 313-322.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Siemens (1994). SHELXTL (Version 5.0) and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA

